В это статье рассматривается тема, как запитать от низковольтного источника(к примеру, разряженной батарейки) светодиод.Но, для тех, кто не совсем дружит с электроникой, а попросту говоря для начинающих( без обид , все когда-то начинали), хочу сказать , что устройствами собранными по этим схемам, можно питать любую нагрузку, для которой достаточно мощности конкретной схемы. Т.к все приведенные схемы работают в импульсном режиме, то величина импульса, особенно в схемах с индуктивностью, может достигать нескольких десятков, а при определенном соотношении витков и сотен вольт. И кто мешает от этих схем заряжать аккумулятор. Вот Вам и импульсная технология. Заряжать аккумулятор от "дохлых" батареек, по которым утиль "плачет", по моему, интересная тема.
Низковольтное питание светодиодов
Светодиодные источники оптического излучения видимого диапазона, в силу конструктивных особенностей не могут светиться при напряжении ниже 1,6... 1,8 В. Это обстоятельство резко ограничивает возможность применения светодиодов в устройствах, с низковольтным (от одного гальванического элемента) питанием. Предлагаемые светодиодные излучатели с низковольтным (0,1... 1,6 В) питанием можно использовать для индикации напряжений, передачи данных по оптическим каналам связи и т.д. Для их питания можно использовать и электрохимические элементы сверхмалого напряжения, в которых электролитом служат увлажненная почва или биологически активные среды.
Многообразие схем низковольтного питания светодиодов можно свести к двум основным разновидностям преобразования напряжения низкого уровня в напряжение высокого. Это схемы с емкостными и индуктивными накопителями энергии.
На рис.1 показана схема питания светодиода с использованием принципа удвоения напряжения питания. Генератор низкочастотных импульсов, частота следования которых определяется цепочкой R1-C1, а продолжительность - R2-C1, выполнен на транзисторах p-n-р и n-p-n структуры. С выхода генератора короткие импульсы через резистор R4 подаются на базу транзистора VT3, в коллекторную цепь которого включен красный светодиод HL1 и германиевый диод VD1. Между выходом генератора импульсов и точкой соединения светодиода и германиевого диода подключен электролитический конденсатор С2 большой емкости.
В период продолжительной паузы между импульсами (транзистор VT2 закрыт и не проводит ток) этот конденсатор заряжается через VD1 и R3 до напряжения источника питания. При генерации короткого импульса транзистор VT2 открывается. Отрицательно заряженная обкладка конденсатора С2 оказывается соединенной с положительной шиной питания. Диод VD1 запирается. Заряженный конденсатор С2 оказывается подключен последовательно с источником питания и нагружен на цепочку: светодиод - переход эмиттер-коллектор транзистора VT3. Поскольку тем же импульсом транзистор VT3 отпирается, его сопротивление эмиттер-коллектор уменьшается. Таким образом, практически удвоенное напряжение питания (исключая незначительные потери) оказывается кратковременно приложенным к светодиоду - следует его яркая вспышка. После этого процесс заряда-разряда конденсатора С2 периодически повторяется.
При использовании светодиодов типа АЛ307КМ с напряжением свечения 1,35... 1,4 В, рабочее напряжение генератора составляет 0,8...1,6 В. Границы диапазона определены так: нижняя указывает напряжение начала свечения светодиода, верхняя - напряжение, при котором потребляемый устройством ток равен 20 мА.
Поскольку генератор работает в импульсном режиме, генерируются яркие вспышки света, привлекающие внимание. В схеме необходимо использовать хотя и низковольтный, но довольно громоздкий электролитический конденсатор С2 большой емкости.
Источники низковольтного питания светодиодов на основе мультивибраторов изображены на рис.2, 3. Первый из них выполнен на основе асимметричного мультивибратора, вырабатывающего короткие импульсы с большой междуимпульсной паузой. Накопитель энергии - конденсатор СЗ - периодически заряжается от источника питания и разряжается на светодиод, суммируя свое напряжение с напряжением питания.
Генератор (рис.3) обеспечивает, в отличие от предыдущей схемы, непрерывный характер свечения светодиода. Устройство выполнено на основе симметричного мультивибратора и работает на повышенных частотах. В связи с этим емкости конденсаторов в этой схеме достаточно малы. Конечно, яркость свечения заметно понижена, но средний ток, потребляемый генератором при напряжении питания 1,5 В, не превышает 3 мА.
Преобразователи напряжения конденсаторного типа (с удвоением напряжения) для питания светодиодных излучателей теоретически могут обеспечить снижение рабочего напряжения питания только до 60%. Использование в этих целях многокаскадных умножителей напряжения малоперспективно в связи с прогрессивно возрастающими потерями и падением КПД преобразователя.
Более перспективны в плане дальнейшего снижения напряжения питания преобразователи с индуктивными накопителями энергии. Заметно понизить нижнюю границу напряжения питания стало возможным за счет перехода на LC-варианты схем генераторов, использующих индуктивные накопители энергии.
В качестве индуктивного накопителя энергии в первой из схем (рис.4) использован телефонный капсюль. Одновременно со световым излучением генератор вырабатывает акустические сигналы. При увеличении емкости конденсатора до 200 мкФ генератор переходит в импульсный режим работы, вырабатывая прерывистые световые и звуковые сигналы. В качестве активного элемента используется несколько необычная структура - последовательное соединение транзисторов разного типа проводимости, охваченных положительной обратной связью.
Преобразователи напряжения для питания светодиода на рис.5 и 6 выполнены на аналогах инжекционно-полевых транзисторов. Первый из преобразователей (рис.5) использует комбинированную индуктивно-емкостную схему повышения выходного напряжения, сочетая принцип емкостного удвоения напряжения с получением повышенного напряжения на коммутируемой индуктивности.
Наиболее прост генератор на аналоге инжекционно-полевого транзистора (рис.6), где светодиод одновременно исполняет роль конденсатора и является нагрузкой генератора. Устройство работает в узком диапазоне питающих напряжений, однако яркость свечения светодиода довольно высока, поскольку преобразователь является чисто индуктивным и имеет высокий КПД.
На рис.7 показан генератор трансформаторного типа для питания светодиодов низковольтным напряжением. Генератор содержит три элемента, одним из которых является светоизлучающий диод. Без светодиода устройство является простейшим блокинг-генератором, причем на выходе трансформатора может формироваться довольно высокое напряжение. Если в качестве нагрузки генератора использовать светодиод, он начинает ярко светиться. В схеме в качестве трансформатора использовано ферритовое кольцо Ф1000 К10x6x2,5. Обмотки трансформатора имеют по 15.. .20 витков провода ПЭВ диаметр 0,23 мм. В случае отсутствия генерации концы одной из обмоток трансформатора меняют местами.Эту схему я использовал в экспериментах с "земляным элементом".
(Только в цепь базы включил подстроечный резистор, ибо без него транзистор грелся, что мне было не нужно. Вот поле для поиска, ставь третью многовитковую катушку и получи тысячу с лишним вольт от "умирающей" батарейки или другого низковольтного источника.)
При переходе на высокочастотные германиевые транзисторы типа 1Т311, 1Т313 и использовании унифицированных импульсных трансформаторов типа МИТ-9, ТОТ-45 и др., нижнюю границу рабочих напряжений можно опустить до 0,125 В.
Напряжение питания всех рассмотренных схем, во избежание повреждения светодиодов, не должно превышать 1,6... 1,7 В.